

Welcome to Goodman HTS Pipeline’s Documentation

[image: _images/goodman.svg]
 [https://travis-ci.org/soar-telescope/goodman][image: _images/badge.svg]
 [https://coveralls.io/github/soar-telescope/goodman?branch=master][image: Documentation Status]
 [http://goodman.readthedocs.io/en/latest/?badge=latest][image: _images/powered%20by-AstroPy-orange.svg]
 [http://www.astropy.org/]This is the User Manual for the Goodman Spectroscopic Data Reduction
Pipeline. It provides an overview of the pipeline’s main features,
instructions on its use and how to run it on our dedicated Data Reduction
Server, and installation instructions for those who wish to run it on their own
computers.

User Manual

	Overview

	Usage
	Prepare Data for Reduction

	Processing your 2D images

	Extracting the spectra

	Description of custom keywords

	Cosmic Ray Removal

	Flat Normalization

	Extraction Methods

	File Prefixes

	Remote Access
	Establish a VNC connection

	VNC from the Terminal

	Install
	Requirements

	Using Conda

	Working with Virtual Environments

	Using PIP

	Setup for local installation

	Installing DCR

About the Goodman Pipeline

	License

	Authors and Credits

	Acknowledgements

	Questions & Answers

	Change History

API Documentation

	Index

	Module Index

	Search Page

Overview

The Goodman Spectroscopic Data Reduction Pipeline - The Goodman Pipeline - is a
Python-based package for producing science-ready, wavelength-calibrated, 1-D
spectra. The goal of The Goodman Pipeline is to provide SOAR users with an easy to
use, very well documented software for reducing spectra obtained with the
Goodman High Troughput Spectrograph [http://www.ctio.noao.edu/soar/content/goodman-high-throughput-spectrograph].
Though the current implementation assumes offline data reduction, our aim is to
provide the capability to run it in real time, so 1-D wavelength calibrated
spectra can be produced shortly after the shutter closes.

The pipeline is primarily intended to be run on a data reduction dedicated
computer though it is available for local installation. The Goodman Spectroscopic Pipeline
project is hosted at GitHub at
it’s GitHub Repository [https://github.com/soar-telescope/goodman].

Instructions for running the software are provided in the Usage section
of this guide. How to access the the data reduction server is on
Setup for Remote Use or if you prefer to install a local version instructions
are in Install

Currently the pipeline is separated into two main components. The initial
processing is done by redccd, which does the following processess.

	Identifies calibrations and science frames.

	Create master bias.

	Creates master flats and normalizes it.

	Apply overscan correction.

	Trims the image.

	For spectroscopic data find slit edges and trims again.

	Applies bias correction.

	Applies flat correction.

	Applies cosmic ray removal.

The spectroscopic processing is done by redspec and carries out the
following steps:

	Identifies point-source targets.

	Traces the spectra.

	Extracts the spectra.

	Estimates and subtract background.

	Saves extracted (1D) spectra, without wavelength calibration.

	Finds the wavelength solution.

	Linearizes data (resample)

	Writes the wavelength solution to FITS header

	Creates a new file for the wavelength-calibrated 1D spectrum

Usage

The Goodman Spectroscopic Pipeline is designed to be simple to use, however simple does
not always is the best case for everyone, thus The Goodman Pipeline is also
flexible.

	Getting Help.

	This manual is intended to be the prefered method to get help. However the quickest option is using -h or --help

redccd --help

Will print the list of arguments along with a quick explanation and default values.

It is the same for redspec

redspec --help

Prepare Data for Reduction

If you did a good job preparing and doing the observation this should be an easy
step, either way, keep in mind the following steps.

	Remove all focus sequence.

	Remove all target acquisition or test frames.

	Using your observation’s log remove all unwanted files.

	Make sure all data has the same gain (GAIN) and readout noise (RDNOISE)

	Make sure all data has the same Region Of Interest or ROI (ROI).

The pipeline does not modify the original files unless there are problems with
fits compliance, is never a bad idea to keep copies of your original data in
a safe place.

Processing your 2D images

It is the first step in
the reduction process, the main tasks are listed below.

	Create master bias

	Create master flats

	Apply Corrections:

	Overscan

	Trim image

	Detect slit and trim out non-illuminated areas

	Bias correction

	Normalized flat field correction

	Cosmic ray rejection

Note

Some older Goodman HTS data has headers that are not FITS compliant,
In such cases the headers are fixed and that is the only modification done to
raw data.

The 2D images are initially reduced using redccd. You can simply move to the
directory where your raw data is located and do:

redccd

Though you can modify the behavior in several ways.

Running redccd will create a directory called RED where it will put your
reduced data. If you want to run it again it will prevent you from accidentally
removing your already reduced data unless you use --auto-clean this will
tell the pipeline to delete the RED directory and start over.

redccd --auto-clean

A summary of the most important command line arguments are presented below.

	--cosmic <method> Let you select the method to do Cosmic Ray Removal.

	--debug Show extended messages and plots of intermediate steps.

	--flat-normalize <method> Let you select the method to do Flat Normalization.

	--flat-norm-order <order> Set order for the model used to do
Flat Normalization. Default 15.

	--ignore-bias Ignores the existence or lack of BIAS data.

	--ignore-flats Ignores the existence or lack of FLAT data.

	--raw-path <path> Set the directory where the raw data is located, can be relative.

	--red-path <path> Set the directory where the reduced data will be stored. Default RED.

	--saturation <saturation> Set the saturation level. Flats exceeding the saturation
level will be discarded. Default 65.000 ADU.

This is intended to work with spectroscopic and imaging data, that it is why
the process is split in two.

Extracting the spectra

After you are done Processing your 2D images it is time to extract the
spectrum into a wavelength-calibrated 1D file.

The script is called redspec. The tasks performed are the following:

	Classifies data and creates the match of OBJECT and COMP if it exists.

	Identifies targets

	Extracts targets

	Saves extracted targets to 1D spectrum

	Finds wavelength solution automatically

	Linearizes data

	Saves wavelength calibrated file

First you have to move into the RED directory, this is a precautionary method
to avoid unintended deletion of your raw data. Then you can simply do:

redspec

And the pipeline should work its magic, though this might not be the desired
behavior for every user or science case, we have implemented a set of
command line arguments which are listed below.

	--data-path <path> Folder were data to be processed is located. Default
is current working directory.

	--proc-path <path> Folder were processed data will be stored. Default
is current working directory.

	--search-pattern <pattern> Prefix for picking up files. Default
cfzsto. See File Prefixes.

	--extraction <method> Select the Extraction Methods. The only one
implemented at the moment is fractional .

	--reference-files <path> Folder where to find reference-lamps

	--debug Shows extended and more messages. Also show plots of intermediate
steps.

	--max-targets <value> Maximum number of targets to detect in a single
image. Default is 3.

	--save-plots Save plots as described in Plotting & Save

	--plot-results Show plots during execution.

The mathematical model used to define the wavelength solution is recorded
in the header even though the data has been linearized for record purpose.

Description of custom keywords

The pipeline adds several keywords to keep track of the process and in general
for keeping important information available. The following table gives a description
of all the keywords added by The Goodman Pipeline, though not all of them are
added to all the images.

General Purpose Keywords

These keywords are used for record purpose, except for GSP_FNAM which is
used to keep track of the file name.

General purpose keywords, added to all images at the moment of the first read.

	Keyword

	Purpose

	GSP_VERS

	Pipeline version.

	GSP_ONAM

	Original file name, first read.

	GSP_PNAM

	Parent file name.

	GSP_FNAM

	Current file name.

	GSP_PATH

	Path from where the file was read.

	GSP_TECH

	Observing technique. Imaging or Spectroscopy.

	GSP_DATE

	Date of processing.

	GSP_OVER

	Overscan region.

	GSP_TRIM

	Trim section.

	GSP_SLIT

	Slit trim section. From slit-illuminated area.

	GSP_BIAS

	Master bias file used.

	GSP_FLAT

	Master flat file used.

	GSP_NORM

	Master flat normalization method.

	GSP_COSM

	Cosmic ray rejection method.

	GSP_WRMS

	Wavelength solution RMS Error.

	GSP_WPOI

	Number of points used to calculate RMS Error.

	GSP_WREJ

	Number of points rejected from RMS Error Calculation.

	GSP_DCRR

	Reference paper for DCR software (cosmic ray rejection).

Non-linear wavelength solution

Since writing non-linear wavelength solutions to the headers using the FITS
standard (reference) is extremely complex and not necessarily well documented,
we came up with the solution of simply describing the mathematical model
from astropy’s modeling [http://docs.astropy.org/en/latest/modeling/index.html#module-astropy.modeling]. This allows for maintaining the data
untouched while keeping a reliable description of the wavelength solution.

The current implementation will work for writting any polinomial model. Reading is implemented only for Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] which is the
model by default.

Keywords used to describe a non-linear wavelength solution.

	Keyword

	Purpose

	GSP_FUNC

	Name of mathematical model from astropy’s modeling [http://docs.astropy.org/en/latest/modeling/index.html#module-astropy.modeling]

	GSP_ORDR

	Order of the model used.

	GSP_NPIX

	Number of pixels.

	GSP_C000

	Value of parameter c0.

	GSP_C001

	Value of parameter c1.

	GSP_C002

	Value of parameter c2. This goes on depending the order.

Combined Images

Every image used in a combination of images is recorded in the header of the
resulting one. The order does not have importance but most likely the header
of the first one will be used.

The combination is made using the combine() [https://ccdproc.readthedocs.io/en/latest/api/ccdproc.combine.html#ccdproc.combine] method with the following parameters

	method='median'

	sigma_clip=True

	sigma_clip_low_thresh=1.0

	sigma_clip_high_thresh=1.0

At this moment these parameters are not user-configurable.

Keywords that list all the images used to produce a combined image.

	Keyword

	Purpose

	GSP_IC01

	First image used to create combined.

	GSP_IC02

	Second image used to create combined.

Detected lines

The reference lamp library maintains the lamps non-linearized and also they
get a record of the pixel value and its equivalent in angstrom. In the following
table a three-line lamp is shown.

Description of all the keywords used to list lines in lamps in Pixel and Angstrom.

	Keyword

	Purpose

	GSP_P001

	Pixel value for the first line detected.

	GSP_P002

	Pixel value for the second line detected.

	GSP_P003

	Pixel value for the third line detected.

	GSP_A001

	Angstrom value for the first line detected.

	GSP_A002

	Angstrom value for the second line detected.

	GSP_A003

	Angstrom value for the third line detected.

Cosmic Ray Removal

The argument --cosmic <method> has four options but there are only two real
methods.

	default (default):

	Different methods work different for different binning. So if <method> is
set to default the pipeline will decide as follows:

dcr for binning 1x1

lacosmic for binning 2x2 and 3x3 though binning 3x3 has not
being tested.

	dcr:

	It was already said that this method work better for binning 1x1. More
information can be found on Installing DCR. The disadvantages of this method is
that is a program written in C and it is required to write the file to the
disk, process it and read it back again. Still is faster than lacosmic.

The parameters for running dcr are written in a file called dcr.par
a lookup table and a file generator have been implemented but you can parse
custom parameters by placing a dcr.par file in a different directory and
point it using --dcr-par-file <path>.

	lacosmic:

	This is the preferred method for files with binning 2x2 and 3x3.
This is the Astroscrappy’s implementation and is run with the default
parameters. Future versions might include some parameter adjustment.

	none:

	Skips the cosmic ray removal process.

Asymetric binnings have not been tested but the pipeline only takes in
consideration the dispersion axis to decide. This does not mean that the spatial
binning does not impact the performance of any of the methods, we just don’t
know it yet.

Flat Normalization

There are three possible <method> (s) to do the normalization of master flats.
For the method using a model the default model’s order is 15. It can be set
using --flat-norm-order <order>.

	mean:

	Calculates the mean of the image using numpy’s mean() [https://numpy.readthedocs.io/en/latest/reference/generated/numpy.mean.html#numpy.mean] and divide
the image by it.

	simple (default):

	Collapses the master flat across the spatial direction, fits a
Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] model of order 15 and
divide the full image by this fitted model.

	full:

	Fits a Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] model to every
line/column (dispersion axis) and divides it by the fitted model.
This method takes too much to process and it has been left in the code for
experimentation purposes only.

Extraction Methods

The argument --extraction <method> has two options but only fractional
is implemented.

	fractional:

	Fractional pixel extraction differs from a simple and rough extraction
in how it deals with the edges of the region.
pipeline.core.core.extract_fractional_pixel()

	optimal:

	Unfortunately this method has not been implemented yet.

File Prefixes

There are several ways one can do this but we selected adding prefixes to the
file name because is easier to add and also easy to filter using a terminal,
for instance.

ls cfzsto*fits

or in python

import glob

file_list = glob.glob('cfzsto*fits')

So what does all those letter mean? Here is a table to explain it.

Characters and meaning of prefixes

	Letter

	Meaning

	o

	Overscan Correction Applied

	t

	Trim Correction Applied

	s

	Slit trim correction applied

	z

	Bias correction applied

	f

	Flat correction applied

	c

	Cosmic rays removed

	e

	Spectrum extracted to 1D

	w

	1D Spectrum wavelength calibrated

So, for an original file named file.fits:

o_file.fits

Means the file have been overscan corrected while

eczsto_file.fits

Means the spectrum has been extracted to a 1D file but the file has not been
flat fielded (f missing).

Ideally after running redccd the file should be named:

cfzsto_file.fits

And after running redspec:

wecfzsto_file.fits

Setup for Remote Use

The Goodman Spectroscopic Data Reduction Pipeline has been installed on a
dedicated computer at SOAR. The procedure requires to open a VNC session, for which
you need to be connected to the SOAR VPN. The credentials for the VPN are the
same you used for your observing run, provided by your Support Scientist, who
will also give you the information for the data reduction computer VNC
connection.

Note

IRAF is available in the data server at SOAR. Running iraf will
open an xgterm and ds9 windows. iraf-only will open xgterm but
not ds9

Establish a VNC connection

Separately, you should receive a server hostname, IP, display number and
VNC-password.

VNC display number and working folder assigned to each partner.

	Display

	Partner/Institution

	Folder

	:1

	NOAO

	/home/goodman/data/NOAO

	:2

	Brazil

	/home/goodman/data/BRAZIL

	:3

	UNC

	/home/goodman/data/UNC

	:4

	MSU

	/home/goodman/data/MSU

	:5

	Chile

	/home/goodman/data/CHILE

For this tutorial we will call the vnc server host name as <vnc-server>
the display number is <display-number> and your password is <password>.

The VNC connection should work with any VNC Client like TightVNC, TigerVNC,
RealVNC, etc. The first two run on Linux and can be used directly with the
vncviewer command line.

Important

Please, help us to create an organized enviroment by creating a new folder
using the format YYYY-MM-DD within your institution’s directory and
using it to process your data.

VNC from the Terminal

Find the <display-number> that corresponds to you from the VNC Displays table.
Open a terminal, and assuming you have installed vncviewer.

vncviewer <vnc-server>:<display-number>

You will be asked to type in the <password> provided.

Important

The real values for <vnc-server> and <password>
should be provided by your support scientist.

If the connection succeeds you will see a Centos 7 Desktop using Gnome.

Install

Using the pipeline remotely is the recommended method, in which case you don’t need
to worry about software requirements.

However, for users who wish to go ahead with a local installation, we provide
simple instructions in the current section.

Requirements

The The Goodman Pipeline is completely written in Python 3.x and relies on several
libraries like:

	NumPy

	SciPy

	MatPlotLib

	Pandas

	AstroPy

	AstroPy/ccdproc

	AstroPy/astroplan

	DCR

Using Conda

We do not recommend the installation of these libraries or the
The Goodman Pipeline in your system since updates and upgrades may ruin it. We rather
recommend the use of Virtual Environments. If you are not familiar with this
term, please check the official documentation by visiting the links below:

https://docs.python.org/3/tutorial/venv.html

or

http://docs.python-guide.org/en/latest/dev/virtualenvs/

Another option is to install Conda, a Virtual Environment Manager, or
AstroConda, the same but for astronomers. Everything you need to know
about installing both can be found in the link below:

https://astroconda.readthedocs.io/

Working with Virtual Environments

Virtual environments are a very useful tool, the main contribution of them being:

	Portability

	Protection to the host environment

	Flexibility

If you know nothing about them we recommend you to start in the Conda site [https://conda.io/docs/index.html].

For the purpose of this manual we will just say that a Virtual Environment
lets you have a custom set of libraries/tools in one place, and most importantly
is independent of your host system. Installation will not be discussed here but
you can visit this link [https://conda.io/docs/user-guide/tasks/manage-environments.html]
for information.

	Discover what environments exist in your system.

	conda env list

Will print a list where the first column is the name.

	Activate (enter) the virtual Environment.

	source activate <venv-name>

Where <venv-name> is the name of your virtual environment. Your shell’s
prompt will change to:

(<venv-name>) [user@hostname folder-name]$

	Deactivate (leave) the virtual environment.

	source deactivate

This time the prompt will change again to:

[user@hostname folder-name]$

Using PIP

Warning

You may find that ccdproc and astroplan do not come with Astroconda.
They are not available on any Conda channel either. That means that you will
have to install them separately. You can do so by downloading the source files
and installing them by hand, or simply
activate your Virtual Environment [https://conda.io/docs/user-guide/tasks/manage-environments.html#activating-an-environment] and
then install these two packages using pip with

pip install ccdproc astroplan

Setup for local installation

System installation is not recommended because it can mess things up specially in
Linux and Mac OS. Before you proceed, make sure that your system has all
the required libraries, as described in Requirements.

Once you have Python running and all the libraries installed either using
Conda/AstroConda or not, you may download the last version available in the
following address:

https://github.com/soar-telescope/goodman/releases/latest

Before continuing, make sure that your Virtual Environment is active if this is
the case. There are several ways of doing this but normally the command below
should work:

$ source activate <my_environment_name>

Where <my_environment_name> is the name of your Virtual Environment (e.g.
astroconda).

Now you can finally install the The Goodman Pipeline. Download the file, decompress
it, and enter the directory created during the file decompression. Test the
installation by typing:

$ python setup.py test

If you have any errors, check the traceback. If you find difficulties carring
on at this poing, you may contact us by opening a new issue [https://github.com/soar-telescope/goodman/issues] or using the e-mail
goodman-pipeline@ctio.noao.edu.

If no error messages start popping up in your screen, you are good to carry
on with the installation.

$ python setup.py install

Note

This will install the pipeline in the currently active Python version.
If you have Virtual Environments, make sure that it is active. If not,
you can add the --user option to install only for your user and avoid
needing root access.

Installing DCR

Acknowledgement Note

Please cite: Pych, W., 2004, PASP, 116, 148

In terms of cosmic ray rejection we shifted to a non-python package because the
results were much better compared to LACosmic’s implementation in Astropy.
LACosmic was not designed to work with spectroscopy. Though since version
1.1.0 we shifted from Astropy to Astroscrappy’s implementation
of LACosmic.

The latest version of the Goodman Spectroscopic Pipeline uses a modified version
of dcr to help with the pipeline’s workflow. It is included under

<path_to_download_location>/goodman/pipeline/data/dcr-source/dcr/

goodman is the folder that will be created once you untar or unzip the latest
release of the The Goodman Pipeline.

Important

The changes we made to DCR include deletion of all HISTORY and COMMENT keywords,
which we don’t use in the pipeline. And addition of a couple of custom
keywords, such as: GSP_FNAM, which stores the name of the file being
created. GSP_DCRR which stores the reference to the paper to cite.

You are still encouraged to visit the official
Link [http://users.camk.edu.pl/pych/DCR/]. We remind again that users of the
Goodman Pipeline should cite the DCR paper with the reference indicated above.

Compiling DCR

Compiling dcr is actually very simple.

cd <path_to_download_location>/goodman/pipeline/data/dcr-source/dcr/

Then simply type:

make

This will compile dcr and also it will create other files. The executable
binary here is dcr.

We have successfully compiled dcr right out the box in several platforms, such as:

	Ubuntu 16.04

	Centos 7.1, 7.4

	MacOS Sierra

	Solaris 11

Installing the DCR binary

This is a suggested method. If you are not so sure what you are doing, we
recommend you follow the steps shown below. If you are a more advanced user and
you want to do it your own way, all you have to achieve is to have the dcr
executable binary in your $PATH variable.

	Open a terminal

	In your home directory create a hidden directory .bin (Home directory
should be the default when you open a new terminal window)

mkdir ~/.bin

	Move the binary of your choice and rename it dcr. If you compiled it,
most likely it’s already called dcr so you can ignore the renaming part of
this step.

mv dcr.Ubuntu16.04 ~/.bin/dcr

Or

mv dcr ~/.bin/dcr

	Add your $HOME/.bin directory to your $PATH variable. Open the file
.bashrc and add the following line.

export PATH=$PATH:/home/myusername/.bin

Where /home/myusername is of course your home directory.

	Close and reopen the terminal or load the .bashrc file.

source ~/.bashrc

License

BSD 3-Clause License

Copyright (c) 2018, SOAR Telescope

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Authors and Credits

Development Team

	Simón Torres [https://github.com/simontorres] (SOAR Telescope Data Analyst - main code developer)

	César Briceño [https://github.com/cbaorion] (SOAR Telescope Scientist - team lead)

	Bruno Quint [https://github.com/b1quint] (Brazil Support Astronomer - code development adviser)

Bruno Quint dedicated part of his time as post-doc to this project. Given that,
Bruno Quint would like to acknowledge CNPq for the fellowship which allowed him
to contribute to the development of the pipeline.

Contributors

	David Sanmartim [https://github.com/dsanmartim] (Gemini Astronomer)

	Tina Armond [https://github.com/tarmond] (Brazil Support Astronomer)

We acknowledge the important contribution of David Sanmartim, who developed
the initial incarnation of the redccd module. We thank Tina Armond for her
invaluable help in adding calibrated comparison lamps to the library of
reference comparison lamps for wavelength solution.

Acknowledgements

Our work would not be possible without the friendly work atmosphere at CTIO
headquarters in La Serena, were we can interact with our SOAR and CTIO
colleagues in lively and useful discussions that have been important in making
the Goodman pipeline possible. We also acknowledge fruitful discussions and
suggestions from our colleagues Bart Dunlop, Chris Clemens, and Erik Dennihy,
at University of North Carolina at Chapel Hill.

Questions & Answers

	What is the Goodman High Throughput Spectrograph?.

answer.

	How does the pipeline select the reference lamp?.

answer.

	How should I organize the data?.

More than organized your data should be cleaned of undesired files. There
are some general assumptions in the implementation of the pipeline’s data
organization system that might get confused by files that are not supposed to
be there.

	What is slit trim?.

Is a process to trim the 2D spectroscopic images to the
slit illuminated area only. It works by fitting a box function to the
dispersion-axis-collapsed spatial profile.

The box function is Box1D [http://docs.astropy.org/en/latest/api/astropy.modeling.functional_models.Box1D.html#astropy.modeling.functional_models.Box1D] .
The reason for doing it is because the non-illuminated area causes all sorts of
problems in later steps, such as: existence of nan in master flats.

Change History

V1.1.0 24-07-2018

	Bugs fixed

	--keep-cosmic-file would work for dcr but not for lacosmic

	Changed organization of ReadTheDocs information

	New structure

	Added references to external packages

	This page is the single place to add changes information. CHANGES.md still
exist but contains a link here.

	Added --version argument.

	Implemented astroscrappy’s LACosmic method

	removed ccdproc’s cosmicray_lacosmic() [https://ccdproc.readthedocs.io/en/latest/api/ccdproc.cosmicray_lacosmic.html#ccdproc.cosmicray_lacosmic].

	created default method for cosmic ray rejection.

	For binning 1x1 default is dcr

	For binning 2x2 default is lacosmic

	For binning 3x3 default is lacosmic

methods dcr, lacosmic or none can still be forced by using
--cosmic <method>

V1.0.3 11-07-2018

	Bugs fixed

	programatically access to the version number did not work because it was
based purely on setup.cfg now setup.py has a function that creates the
file pipeline.version which is accessed by pipeline/__init__.py

	File naming was making some file dissapear by being overwritten for files
that contained more than one target the next file name would match the
previous one. A differentiator was added.

V1.0.2 10-07-2018

	Removed module goodman/pipeline/info.py and placed all metadata in goodman/setup.cfg.

	Several updates to documentation

	Added comment on how to organize data on soardata3.

	Added link to licence on footer.

	User manual now is in ReadTheDocs and no longer available as a pdf.

	Improved information on debug plots

	Bugs Fixed.

	fixed GSP_FNAM value for reference lamps

	Spectral limit calculation by including binning into the equation

	Included binning in the calculation of the wavelength solution

	Corrected messages and conditions under which the prefix for cosmic ray rejection is used

	Image combination call and messages

	Other additions
+ Added lookup table dcr.par file generator and found optimal parameters for Red camera and binning 2x2

V1.0.1 xx-xx-2018

	Moved user manual from external repo to goodman/docs/

	Added version checker

	Centralised metadata (__version__, __licence__, etc) in goodman/setup.cfg

	Added CHANGES.md

V1.0.0 29-04-2018

	First production ready release

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pipeline	

 	
 	
 pipeline.core	

 	
 	
 pipeline.core.core	

 	
 	
 pipeline.images	

 	
 	
 pipeline.images.data_classifier	

 	
 	
 pipeline.images.goodman_ccd	

 	
 	
 pipeline.images.image_processor	

 	
 	
 pipeline.images.night_organizer	

 	
 	
 pipeline.spectroscopy	

 	
 	
 pipeline.spectroscopy.new_wavelength	

 	
 	
 pipeline.spectroscopy.redspec	

 	
 	
 pipeline.spectroscopy.wavelength	

 	
 	
 pipeline.tools	

 	
 	
 pipeline.tools.check_version	

 	
 	
 pipeline.tools.reference_lamp_factory	

 	
 	
 pipeline.tools.reference_lamp_factory.create_reference_lamps	

 	
 	
 pipeline.tools.reference_lamp_factory.line_matcher	

 	
 	
 pipeline.tools.reference_lamp_factory.wcs_model_calculator	

 	
 	
 pipeline.tools.update_FNAM	

 	
 	
 pipeline.version	

 	
 	
 pipeline.wcs	

 	
 	
 pipeline.wcs.wcs	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_bias() (pipeline.core.core.NightDataContainer method)

 	add_comp_group() (pipeline.core.core.NightDataContainer method)

 	add_data_group() (pipeline.core.core.NightDataContainer method)

 	add_day_flats() (pipeline.core.core.NightDataContainer method)

 	add_object_group() (pipeline.core.core.NightDataContainer method)

 	
 	add_spec_group() (pipeline.core.core.NightDataContainer method)

 	add_wavelength_solution() (pipeline.spectroscopy.wavelength.WavelengthCalibration method)

 	add_wcs_keys() (in module pipeline.core.core)

 	am_i_updated() (in module pipeline.tools.check_version)

 	astroscrappy_lacosmic() (in module pipeline.core.core)

B

 	
 	binning (pipeline.wcs.wcs.WCS attribute)

C

 	
 	call_cosmic_rejection() (in module pipeline.core.core)

 	check_comp_group() (pipeline.core.core.ReferenceData method)

 	check_compatibility() (pipeline.spectroscopy.wavelength.WavelengthSolution method)

 	check_header_cards() (pipeline.images.night_organizer.NightOrganizer method)

 	
 	classify_spectroscopic_data() (in module pipeline.core.core)

 	combine_data() (in module pipeline.core.core)

 	convert_time() (in module pipeline.core.core)

 	create_master_bias() (pipeline.images.image_processor.ImageProcessor method)

 	create_master_flats() (pipeline.images.image_processor.ImageProcessor method)

D

 	
 	data_groups (pipeline.core.core.NightDataContainer attribute)

 	DataClassifier (class in pipeline.images.data_classifier)

 	
 	DataValidationError

 	dcr_cosmicray_rejection() (in module pipeline.core.core)

 	define_trim_section() (pipeline.images.image_processor.ImageProcessor method)

E

 	
 	extract_fractional_pixel() (in module pipeline.core.core)

 	
 	extract_optimal() (in module pipeline.core.core)

 	extraction() (in module pipeline.core.core)

F

 	
 	fit() (pipeline.wcs.wcs.WCS method)

 	
 	fractional_sum() (in module pipeline.core.core)

G

 	
 	GenerateDcrParFile (class in pipeline.core.core)

 	get_args() (in module pipeline.images.goodman_ccd)

 	(in module pipeline.spectroscopy.redspec)

 	get_best_flat() (in module pipeline.core.core)

 	get_cam_grt_targ_angle() (pipeline.core.core.SpectroscopicMode method)

 	get_central_wavelength() (in module pipeline.core.core)

 	get_last() (in module pipeline.tools.check_version)

 	get_mode() (pipeline.core.core.SpectroscopicMode method)

 	
 	get_model() (pipeline.wcs.wcs.WCS method)

 	get_overscan_region() (pipeline.images.image_processor.ImageProcessor method)

 	get_reference_lamp() (pipeline.core.core.ReferenceData method)

 	get_slit_trim_section() (in module pipeline.core.core)

 	get_spectral_characteristics() (in module pipeline.tools.reference_lamp_factory.line_matcher)

 	get_twilight_time() (in module pipeline.core.core)

 	get_wsolution() (pipeline.spectroscopy.wavelength.WavelengthCalibration method)

 	GSPWcsCalculator (class in pipeline.tools.reference_lamp_factory.wcs_model_calculator)

I

 	
 	identify_matching_line() (pipeline.tools.reference_lamp_factory.line_matcher.LineMatcher method)

 	identify_targets() (in module pipeline.core.core)

 	image_overscan() (in module pipeline.core.core)

 	image_trim() (in module pipeline.core.core)

 	
 	ImageProcessor (class in pipeline.images.image_processor)

 	imaging_night() (pipeline.images.night_organizer.NightOrganizer method)

 	interpolate() (in module pipeline.core.core)

 	is_empty (pipeline.core.core.NightDataContainer attribute)

K

 	
 	KeywordUpdate (class in pipeline.tools.update_FNAM)

L

 	
 	lamp_exists() (pipeline.core.core.ReferenceData method)

 	
 	LineMatcher (class in pipeline.tools.reference_lamp_factory.line_matcher)

M

 	
 	MainApp (class in pipeline.images.goodman_ccd)

 	(class in pipeline.spectroscopy.redspec)

N

 	
 	name_master_flats() (pipeline.images.image_processor.ImageProcessor method)

 	NightDataContainer (class in pipeline.core.core)

 	NightOrganizer (class in pipeline.images.night_organizer)

 	
 	NoMatchFound

 	normalize_master_flat() (in module pipeline.core.core)

 	NoTargetException

 	NotEnoughLinesDetected

P

 	
 	pipeline (module)

 	pipeline.core (module)

 	pipeline.core.core (module)

 	pipeline.images (module)

 	pipeline.images.data_classifier (module)

 	pipeline.images.goodman_ccd (module)

 	pipeline.images.image_processor (module)

 	pipeline.images.night_organizer (module)

 	pipeline.spectroscopy (module)

 	pipeline.spectroscopy.new_wavelength (module)

 	pipeline.spectroscopy.redspec (module)

 	pipeline.spectroscopy.wavelength (module)

 	
 	pipeline.tools (module)

 	pipeline.tools.check_version (module)

 	pipeline.tools.reference_lamp_factory (module)

 	pipeline.tools.reference_lamp_factory.create_reference_lamps (module)

 	pipeline.tools.reference_lamp_factory.line_matcher (module)

 	pipeline.tools.reference_lamp_factory.wcs_model_calculator (module)

 	pipeline.tools.update_FNAM (module)

 	pipeline.version (module)

 	pipeline.wcs (module)

 	pipeline.wcs.wcs (module)

 	process_imaging_science() (pipeline.images.image_processor.ImageProcessor method)

 	process_spectroscopy_science() (pipeline.images.image_processor.ImageProcessor method)

R

 	
 	ra_dec_to_deg() (in module pipeline.core.core)

 	read() (pipeline.wcs.wcs.WCS method)

 	read_fits() (in module pipeline.core.core)

 	
 	read_gsp_wcs() (pipeline.wcs.wcs.WCS method)

 	ReferenceData (class in pipeline.core.core)

 	ReferenceLibraryFactory (class in pipeline.tools.reference_lamp_factory.create_reference_lamps)

S

 	
 	save_extracted() (in module pipeline.core.core)

 	search_comp_group() (in module pipeline.core.core)

 	set_readout() (pipeline.core.core.NightDataContainer method)

 	set_solution_name() (pipeline.spectroscopy.wavelength.WavelengthSolution method)

 	set_spectral_features() (pipeline.spectroscopy.wavelength.WavelengthSolution method)

 	set_sun_times() (pipeline.core.core.NightDataContainer method)

 	
 	set_twilight_times() (pipeline.core.core.NightDataContainer method)

 	Settings (class in pipeline.tools.reference_lamp_factory.create_reference_lamps)

 	SettingsField (class in pipeline.tools.reference_lamp_factory.create_reference_lamps)

 	setup_logging() (in module pipeline.core.core)

 	spec_groups (pipeline.core.core.NightDataContainer attribute)

 	SpectroscopicMode (class in pipeline.core.core)

 	spectroscopy_night() (pipeline.images.night_organizer.NightOrganizer method)

T

 	
 	trace() (in module pipeline.core.core)

 	
 	trace_targets() (in module pipeline.core.core)

W

 	
 	WavelengthCalibration (class in pipeline.spectroscopy.new_wavelength)

 	(class in pipeline.spectroscopy.wavelength)

 	WavelengthSolution (class in pipeline.spectroscopy.wavelength)

 	
 	WCS (class in pipeline.wcs.wcs)

 	write_fits() (in module pipeline.core.core)

 	write_fits_wcs() (pipeline.wcs.wcs.WCS method)

 	write_gsp_wcs() (pipeline.wcs.wcs.WCS static method)

Cosmic Ray Removal

The argument --cosmic <method> has four options but there are only two real
methods.

	default (default):

	Different methods work different for different binning. So if <method> is
set to default the pipeline will decide as follows:

dcr for binning 1x1

lacosmic for binning 2x2 and 3x3 though binning 3x3 has not
being tested.

	dcr:

	It was already said that this method work better for binning 1x1. More
information can be found on Installing DCR. The disadvantages of this method is
that is a program written in C and it is required to write the file to the
disk, process it and read it back again. Still is faster than lacosmic.

The parameters for running dcr are written in a file called dcr.par
a lookup table and a file generator have been implemented but you can parse
custom parameters by placing a dcr.par file in a different directory and
point it using --dcr-par-file <path>.

	lacosmic:

	This is the preferred method for files with binning 2x2 and 3x3.
This is the Astroscrappy’s implementation and is run with the default
parameters. Future versions might include some parameter adjustment.

	none:

	Skips the cosmic ray removal process.

Asymetric binnings have not been tested but the pipeline only takes in
consideration the dispersion axis to decide. This does not mean that the spatial
binning does not impact the performance of any of the methods, we just don’t
know it yet.

Data Requirements

The Goodman High Throughput Spectrograph’s data has seen some evolution in the past years, in shape and
most importantly in its headers. The Goodman Spectroscopic Pipeline relies heavily on the data’s
header so this is in fact very important.

The headers must be FITS Compliant [https://fits.gsfc.nasa.gov/fits_standard.html],
otherwise the software exits with errors.

Bear in mind that the Goodman Spectrograph has two cameras [http://www.ctio.noao.edu/soar/content/goodman-spectrograph-overview], Blue and Red.

Recent data obtained with the Red Camera already meets all the requirements in
terms of format and header cards. Data obtained with the Blue Camera before
March, 2018 is expected to have several format issues:

	There were non fits-compliant characters in some comments. To solve that, you can edit the header using the most recent version of AstroPy, IRAF or WCSTOOLS to remove the following keywords: PARAM0, PARAM61, PARAM62 and PARAM63.

	The data was defined as 3D, just like a single frame of a data cube. To solve this, you will have to read the data and rewrite it with only two dimensions using AstroPy or IRAF.

	Some keywords were added with time.

	INSTCONF: contains the name of the Goodman Camera used, e.g., “Blue” or “Red”.

	WAVMODE: contains the ruling number of the used grating and the mode name, e.g., “400 m1” or “400 m2”.

	ROI: the name of the region of interest, e.g., “Spectroscopic 1x1”, “user-defined”, etc.

	Duplicated keywords. Make sure that your data does not contain duplicated keywords.

Reference Lamp Files

Having an automatic wavelength calibration method relies on having previously calibrated
reference lamps obtained in the same configuration or mode. It is also important
that the lamp names are correct, for instance HgAr is quite different than
HgArNe. Spaces between lamps are not allowed. And the name is case
insensitive: you may write “HgAr”, “HGAR” or “hgar”.
The list of current lamps is the following.

List of Goodman Spectrograph supported modes

	Grating

	Mode

	Filter

	Lamp

	400

	M1

	None

	HgAr, HgArNe

	400

	M2

	GG455

	Ar, Ne, HgAr, HgArNe, CuHeAr, FeHeAr

Important

More lamps will be made public shortly.

Headers Requirements

Goodman HTS spectra have small non-linearities on their wavelength solutions.
They are small but must be taken into account.

It was necessary to implement a custom way of storing non-linear wavelength
solutions that at the same time allowed for keeping data as untouched as
possible. The main reason is that linearizing the reference lamps made it
harder to track down those non-linearities on the new data being calibrated. Also,
The documentation on how to write non-linear solution to a FITS header is
far too complex for our use case and there is no apparent effort on trying to
simplify it. Below we compile a list of required keywords for
comparison lamps if they want to be used as reference lamps. The full list of
keywords is listed under `New Keywords`_.

	General Custom Keywords:

	Every image processed with the Goodman Spectroscopic Pipeline will have the
`general keywords`_. The one required for a reference lamp is the following:

GSP_FNAM = file-name.fits / Current file name

	Record of `detected lines`_ in Pixel and Angstrom:

	Reference lamps have a record of usable lines in its header. Initially the lamp
is run through a tool that identifies the lines and records its pixel value.
The root string is GSP_P followed by a zero-padded three digit sequential number
(001, 002, etc). For instance.

GSP_P001= 499.5377036976768 / Line location in pixel value
GSP_P002= 810.5548319623747 / Line location in pixel value
GSP_P003= 831.6984711087946 / Line location in pixel value

Later, the equivalent values in angstrom are then recorded with the root string
GSP_A and the same numerical pattern as before.

GSP_A001= 5460.75 / Line location in angstrom value
GSP_A002= 5769.61 / Line location in angstrom value
GSP_A003= 5790.67 / Line location in angstrom value

GSP_P001 and GSP_A001 are a match. If any of the angstrom value entries
have a value of 0 (default value) the equivalent pair pixel/angstrom entry is ignored.
Also they must be organized in an always increasing way, if they are not, they
will be ignored too.

Important

Those keywords are used to calculate the mathematical fit of the
wavelength solution and are not used on normal operation. Our philosophy here
is that the line identification has to be done only once and then the
model can be fitted several times, actually you can try several models
if you want. (On your own)

	`Non-linear wavelength solution`_:

	The method for recording the non-linear wavelength solution is actually
very simple. It requires: GSP_FUNC which stores a string with the name of
the mathematical model from astropy.modeling.models. GSP_ORDR stores
the order or degree of the model. GSP_NPIX stores the number of pixels in
the spectral axis. Then there is N+1 parameter keywords where N is the order
of the model defined by GSP_ORDR. The root string of the keyword is GSP_C
and the rest is a zero-padded three digit number starting on zero to N.
See the example below.

GSP_FUNC= Chebyshev1D / Mathematical model of non-linearized data
GSP_ORDR= 3 / Mathematical model order
GSP_NPIX= 4060 / Number of Pixels
GSP_C000= 4963.910057577853 / Value of parameter c0
GSP_C001= 0.9943952599223119 / Value of parameter c1
GSP_C002= 5.59241584012648e-08 / Value of parameter c2
GSP_C003= -1.2283411678846e-10 / Value of parameter c3

Warning

This method has been developed and tested to write correctly polynomial-like
models. And ONLY reads Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] models.
Other models will just be ignored. More development will be done based on
request, suggestions or needs.

File organization

redccd and redspec will look for all FITS files inside the current working
directory or inside the path provided with the --raw-path (redccd)/--data-path (redspec)
flag non-recursively. Make sure to have only data that contains relevant signal.
Data obtained during the focusing process, saturated flats, etc, must be removed.

Also, we recommend you follow these good practices:

	Delete all unnecessary files (focus, test, acquisition, unwanted exposures, etc)

	Don’t mix different ROI (Region Of Interest), Gain and Readout Noises.

	Make sure all the required file types are present: BIAS, FLAT, COMP, OBJECT.

Extraction Methods

The argument --extraction <method> has two options but only fractional
is implemented.

	fractional:

	Fractional pixel extraction differs from a simple and rough extraction
in how it deals with the edges of the region.
pipeline.core.core.extract_fractional_pixel()

	optimal:

	Unfortunately this method has not been implemented yet.

File Prefixes

There are several ways one can do this but we selected adding prefixes to the
file name because is easier to add and also easy to filter using a terminal,
for instance.

ls cfzsto*fits

or in python

import glob

file_list = glob.glob('cfzsto*fits')

So what does all those letter mean? Here is a table to explain it.

Characters and meaning of prefixes

	Letter

	Meaning

	o

	Overscan Correction Applied

	t

	Trim Correction Applied

	s

	Slit trim correction applied

	z

	Bias correction applied

	f

	Flat correction applied

	c

	Cosmic rays removed

	e

	Spectrum extracted to 1D

	w

	1D Spectrum wavelength calibrated

So, for an original file named file.fits:

o_file.fits

Means the file have been overscan corrected while

eczsto_file.fits

Means the spectrum has been extracted to a 1D file but the file has not been
flat fielded (f missing).

Ideally after running redccd the file should be named:

cfzsto_file.fits

And after running redspec:

wecfzsto_file.fits

Flat Normalization

There are three possible <method> (s) to do the normalization of master flats.
For the method using a model the default model’s order is 15. It can be set
using --flat-norm-order <order>.

	mean:

	Calculates the mean of the image using numpy’s mean() [https://numpy.readthedocs.io/en/latest/reference/generated/numpy.mean.html#numpy.mean] and divide
the image by it.

	simple (default):

	Collapses the master flat across the spatial direction, fits a
Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] model of order 15 and
divide the full image by this fitted model.

	full:

	Fits a Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] model to every
line/column (dispersion axis) and divides it by the fitted model.
This method takes too much to process and it has been left in the code for
experimentation purposes only.

Features Available

	Self-contained, full data reduction package for the most commonly used
predefined setups with Goodman HTS. Given the almost limitless number of
possible configurations available with the Goodman instrument, only the most
popular configurations will be supported, though we will try to add as many
modes as possible.

	Python based, using existing Astropy libraries as much as feasible.

	Extensively documented, using general coding standards: PEP8 – Style Guide,
PEP257 – Docstrings Convention (in-code documentation) – Google Style

	Multiplataform compatibility (tested on Linux Ubuntu, CentOS and MacOSX).

	Modular design. Could be used as a library within other Python applications.

Future Implementation

Here is a list of the features we are planning to implement.

	Additions:

	
	Extraction of extended sources

	Flux calibration module

	Source deblending

	Live version of |pipeline name|.

	Improvements:

	
	Method to calculate wavelength solution, giving more options in terms of models.

	Code clean up

	Documentation

Supported Data

We are currently supporting data obtained since |headers change|, however you should
be able to process older data making sure you data meets the `data requirements`_.

Plotting & Save

Description of custom keywords

The pipeline adds several keywords to keep track of the process and in general
for keeping important information available. The following table gives a description
of all the keywords added by |pipeline name|, though not all of them are
added to all the images.

General Purpose Keywords

These keywords are used for record purpose, except for GSP_FNAM which is
used to keep track of the file name.

General purpose keywords, added to all images at the moment of the first read.

	Keyword

	Purpose

	GSP_VERS

	Pipeline version.

	GSP_ONAM

	Original file name, first read.

	GSP_PNAM

	Parent file name.

	GSP_FNAM

	Current file name.

	GSP_PATH

	Path from where the file was read.

	GSP_TECH

	Observing technique. Imaging or Spectroscopy.

	GSP_DATE

	Date of processing.

	GSP_OVER

	Overscan region.

	GSP_TRIM

	Trim section.

	GSP_SLIT

	Slit trim section. From slit-illuminated area.

	GSP_BIAS

	Master bias file used.

	GSP_FLAT

	Master flat file used.

	GSP_NORM

	Master flat normalization method.

	GSP_COSM

	Cosmic ray rejection method.

	GSP_WRMS

	Wavelength solution RMS Error.

	GSP_WPOI

	Number of points used to calculate RMS Error.

	GSP_WREJ

	Number of points rejected from RMS Error Calculation.

	GSP_DCRR

	Reference paper for DCR software (cosmic ray rejection).

Non-linear wavelength solution

Since writing non-linear wavelength solutions to the headers using the FITS
standard (reference) is extremely complex and not necessarily well documented,
we came up with the solution of simply describing the mathematical model
from astropy’s modeling [http://docs.astropy.org/en/latest/modeling/index.html#module-astropy.modeling]. This allows for maintaining the data
untouched while keeping a reliable description of the wavelength solution.

The current implementation will work for writting any polinomial model. Reading is implemented only for Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] which is the
model by default.

Keywords used to describe a non-linear wavelength solution.

	Keyword

	Purpose

	GSP_FUNC

	Name of mathematical model from astropy’s modeling [http://docs.astropy.org/en/latest/modeling/index.html#module-astropy.modeling]

	GSP_ORDR

	Order of the model used.

	GSP_NPIX

	Number of pixels.

	GSP_C000

	Value of parameter c0.

	GSP_C001

	Value of parameter c1.

	GSP_C002

	Value of parameter c2. This goes on depending the order.

Combined Images

Every image used in a combination of images is recorded in the header of the
resulting one. The order does not have importance but most likely the header
of the first one will be used.

The combination is made using the combine() [https://ccdproc.readthedocs.io/en/latest/api/ccdproc.combine.html#ccdproc.combine] method with the following parameters

	method='median'

	sigma_clip=True

	sigma_clip_low_thresh=1.0

	sigma_clip_high_thresh=1.0

At this moment these parameters are not user-configurable.

Keywords that list all the images used to produce a combined image.

	Keyword

	Purpose

	GSP_IC01

	First image used to create combined.

	GSP_IC02

	Second image used to create combined.

Detected lines

The reference lamp library maintains the lamps non-linearized and also they
get a record of the pixel value and its equivalent in angstrom. In the following
table a three-line lamp is shown.

Description of all the keywords used to list lines in lamps in Pixel and Angstrom.

	Keyword

	Purpose

	GSP_P001

	Pixel value for the first line detected.

	GSP_P002

	Pixel value for the second line detected.

	GSP_P003

	Pixel value for the third line detected.

	GSP_A001

	Angstrom value for the first line detected.

	GSP_A002

	Angstrom value for the second line detected.

	GSP_A003

	Angstrom value for the third line detected.

Prepare Data for Reduction

If you did a good job preparing and doing the observation this should be an easy
step, either way, keep in mind the following steps.

	Remove all focus sequence.

	Remove all target acquisition or test frames.

	Using your observation’s log remove all unwanted files.

	Make sure all data has the same gain (GAIN) and readout noise (RDNOISE)

	Make sure all data has the same Region Of Interest or ROI (ROI).

The pipeline does not modify the original files unless there are problems with
fits compliance, is never a bad idea to keep copies of your original data in
a safe place.

Processing your 2D images

It is the first step in
the reduction process, the main tasks are listed below.

	Create master bias

	Create master flats

	Apply Corrections:

	Overscan

	Trim image

	Detect slit and trim out non-illuminated areas

	Bias correction

	Normalized flat field correction

	Cosmic ray rejection

Note

Some older Goodman HTS data has headers that are not FITS compliant,
In such cases the headers are fixed and that is the only modification done to
raw data.

The 2D images are initially reduced using redccd. You can simply move to the
directory where your raw data is located and do:

redccd

Though you can modify the behavior in several ways.

Running redccd will create a directory called RED where it will put your
reduced data. If you want to run it again it will prevent you from accidentally
removing your already reduced data unless you use --auto-clean this will
tell the pipeline to delete the RED directory and start over.

redccd --auto-clean

A summary of the most important command line arguments are presented below.

	--cosmic <method> Let you select the method to do Cosmic Ray Removal.

	--debug Show extended messages and plots of intermediate steps.

	--flat-normalize <method> Let you select the method to do Flat Normalization.

	--flat-norm-order <order> Set order for the model used to do
Flat Normalization. Default 15.

	--ignore-bias Ignores the existence or lack of BIAS data.

	--ignore-flats Ignores the existence or lack of FLAT data.

	--raw-path <path> Set the directory where the raw data is located, can be relative.

	--red-path <path> Set the directory where the reduced data will be stored. Default RED.

	--saturation <saturation> Set the saturation level. Flats exceeding the saturation
level will be discarded. Default 65.000 ADU.

This is intended to work with spectroscopic and imaging data, that it is why
the process is split in two.

Extracting the spectra

After you are done Processing your 2D images it is time to extract the
spectrum into a wavelength-calibrated 1D file.

The script is called redspec. The tasks performed are the following:

	Classifies data and creates the match of OBJECT and COMP if it exists.

	Identifies targets

	Extracts targets

	Saves extracted targets to 1D spectrum

	Finds wavelength solution automatically

	Linearizes data

	Saves wavelength calibrated file

First you have to move into the RED directory, this is a precautionary method
to avoid unintended deletion of your raw data. Then you can simply do:

redspec

And the pipeline should work its magic, though this might not be the desired
behavior for every user or science case, we have implemented a set of
command line arguments which are listed below.

	--data-path <path> Folder were data to be processed is located. Default
is current working directory.

	--proc-path <path> Folder were processed data will be stored. Default
is current working directory.

	--search-pattern <pattern> Prefix for picking up files. Default
cfzsto. See File Prefixes.

	--extraction <method> Select the Extraction Methods. The only one
implemented at the moment is fractional .

	--reference-files <path> Folder where to find reference-lamps

	--debug Shows extended and more messages. Also show plots of intermediate
steps.

	--max-targets <value> Maximum number of targets to detect in a single
image. Default is 3.

	--save-plots Save plots as described in Plotting & Save

	--plot-results Show plots during execution.

The mathematical model used to define the wavelength solution is recorded
in the header even though the data has been linearized for record purpose.

Working with Virtual Environments

Virtual environments are a very useful tool, the main contribution of them being:

	Portability

	Protection to the host environment

	Flexibility

If you know nothing about them we recommend you to start in the Conda site [https://conda.io/docs/index.html].

For the purpose of this manual we will just say that a Virtual Environment
lets you have a custom set of libraries/tools in one place, and most importantly
is independent of your host system. Installation will not be discussed here but
you can visit this link [https://conda.io/docs/user-guide/tasks/manage-environments.html]
for information.

	Discover what environments exist in your system.

	conda env list

Will print a list where the first column is the name.

	Activate (enter) the virtual Environment.

	source activate <venv-name>

Where <venv-name> is the name of your virtual environment. Your shell’s
prompt will change to:

(<venv-name>) [user@hostname folder-name]$

	Deactivate (leave) the virtual environment.

	source deactivate

This time the prompt will change again to:

[user@hostname folder-name]$

goodman

	pipeline package
	Subpackages
	pipeline.core package
	Subpackages

	Submodules

	pipeline.core.core module

	Module contents

	pipeline.images package
	Subpackages

	Submodules

	pipeline.images.data_classifier module

	pipeline.images.goodman_ccd module

	pipeline.images.image_processor module

	pipeline.images.night_organizer module

	Module contents

	pipeline.spectroscopy package
	Subpackages

	Submodules

	pipeline.spectroscopy.new_wavelength module

	pipeline.spectroscopy.redspec module

	pipeline.spectroscopy.wavelength module

	Module contents

	pipeline.tools package
	Subpackages

	Submodules

	pipeline.tools.check_version module

	pipeline.tools.update_FNAM module

	Module contents

	pipeline.wcs package
	Subpackages

	Submodules

	pipeline.wcs.wcs module

	Module contents

	Submodules

	pipeline.version module

	Module contents

	setup module

pipeline.core.tests package

Submodules

pipeline.core.tests.test_ccdproc module

pipeline.core.tests.test_core module

Module contents

pipeline.core package

Subpackages

	pipeline.core.tests package
	Submodules

	pipeline.core.tests.test_ccdproc module

	pipeline.core.tests.test_core module

	Module contents

Submodules

pipeline.core.core module

	
class pipeline.core.core.GenerateDcrParFile(par_file_name='dcr.par')

	Bases: object

Creates dcr.par file based on lookup table

dcr parameters depend heavily on binning, this class generates a file
using the default format. The lookup table considers camera and binning.

	
class pipeline.core.core.NightDataContainer(path, instrument, technique)

	Bases: object

This class is designed to be the organized data container. It doesn’t
store image data but a list of DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] objects. Also it stores
critical variables such as sunrise and sunset times.

	
add_bias(bias_group)

	Adds a bias group

	Parameters

	bias_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] Contains a set of keyword values of
grouped image metadata

	
add_comp_group(comp_group)

	Adds a comp-only group

All comparison lamps groups are added here. The ones that may have been
taken in the afternoon (isolated) or along science target. This will
act as a pool of comparison lamp groups for eventual science targets
taken without comparison lamps.

	Parameters

	comp_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] Contains a set of keyword values of
grouped image metadata

	
add_data_group(data_group)

	Adds a data group

	Parameters

	data_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] Contains a set of keyword values of
grouped image metadata

	
add_day_flats(day_flats)

	“Adds a daytime flat group

	Parameters

	day_flats (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] Contains a set of keyword values of
grouped image metadata

	
add_object_group(object_group)

	Adds a object-only group

	Parameters

	object_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] Contains a set of keyword values of
grouped image metadata

	
add_spec_group(spec_group)

	Adds a data group containing object and comp

The comparison lamp groups are also added to a general pool of
comparison lamps.

	Parameters

	spec_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] Contains a set of keyword values of
grouped image metadata

	
data_groups = None

	For spectroscopy use

	
is_empty = None

	For imaging use

	
set_readout(gain, rdnoise, roi)

	Set Gain, Read noise and ROI.

	Parameters

	
	gain (float) – Gain from header

	rdnoise (float) – Read noise from header.

	roi (str) – ROI from header.

	
set_sun_times(sun_set, sun_rise)

	Sets values for sunset and sunrise

	Parameters

	
	sun_set (str) – Sun set time in the format ‘YYYY-MM-DDTHH:MM:SS.SS’

	sun_rise (str) – Sun rise time in the format ‘YYYY-MM-DDTHH:MM:SS.SS’

	
set_twilight_times(evening, morning)

	Sets values for evening and morning twilight

	Parameters

	
	evening (str) – Evening twilight time in the format
‘YYYY-MM-DDTHH:MM:SS.SS’

	morning (str) – Morning twilight time in the format
‘YYYY-MM-DDTHH:MM:SS.SS’

	
spec_groups = None

	Time reference points

	
exception pipeline.core.core.NoMatchFound

	Bases: Exception

Exception for when no match is found.

	
exception pipeline.core.core.NoTargetException

	Bases: Exception

Exception to be raised when no target is identified

	
exception pipeline.core.core.NotEnoughLinesDetected

	Bases: Exception

Exception for when there are no lines detected.

	
class pipeline.core.core.ReferenceData(reference_dir)

	Bases: object

Contains spectroscopic reference lines values and filename to templates.

	This class stores:

	
	file names for reference fits spectrum

	file names for CSV tables with reference lines and relative
intensities

	line positions only for the elements used in SOAR comparison lamps

	
check_comp_group(comp_group)

	Check if comparison lamp group has matching reference lamps

	Parameters

	comp_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance that contains
meta-data for a group of comparison lamps.

Returns:

	
get_reference_lamp(header)

	Finds a suitable template lamp from the catalog

	Parameters

	header (object) – FITS header of image we are looking a a reference
lamp.

	Returns

	full path to best matching reference lamp.

	
lamp_exists(object_name, grating, grt_targ, cam_targ)

	Checks whether a matching lamp exist or not

	Parameters

	
	object_name (str) – Name of the lamp from ‘OBJECT’ keyword.

	grating (str) – Grating from ‘GRATING’ keyword.

	grt_targ (str) – Grating target from keyword ‘GRT_TARG’.

	cam_targ (str) – Camera target from keyword ‘CAM_TARG’.

	Returns

	True of False depending if a single matching lamp exist.

	Raises

	NotImplementedError if there are more than one lamp found.

	
class pipeline.core.core.SpectroscopicMode

	Bases: object

	
get_cam_grt_targ_angle(grating, mode)

	Get the camera and grating target values grating and mode

	Parameters

	
	grating (float) – Grating frequency in lines/mm (unitless value)

	mode (str) – Name of the grating’s mode for which the camera and
grating target values are required.

	Returns

	Camera and grating target values. None and None if no such values
exists.

	
get_mode(grating, camera_targ, grating_targ, blocking_filter)

	Get the camera’s optical configuration mode.

This method is useful for data that does not have the WAVMODE keyword

	Parameters

	
	grating (str) – Grating frequency as string

	camera_targ (str) – Camera target angle as in the header.

	grating_targ (str) – Grating target angle as in the header.

	blocking_filter (str) – Order blocking filter listed on the header.

	Returns

	string that defines the wavelength mode used

	
pipeline.core.core.add_wcs_keys(ccd)

	Adds generic keyword for linear wavelength solution to the header

Linear wavelength solutions require a set of standard fits keywords. Later
on they will be updated accordingly.
The main goal of putting them here is to have consistent and nicely ordered
headers.

Notes

This does NOT add a WCS solution, just the keywords.

	Parameters

	ccd (object) – A :class:~astropy.nddata.CCDData` instance with no wcs keywords.

	Returns

	
	A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance with modified header with added

	WCS keywords

	Return type

	ccd (object)

	
pipeline.core.core.astroscrappy_lacosmic(ccd, red_path=None, save_mask=False)

	

	
pipeline.core.core.call_cosmic_rejection(ccd, image_name, out_prefix, red_path, dcr_par, keep_files=False, prefix='c', method='dcr', save=False)

	Call for the appropriate cosmic ray rejection method

There are four options when dealing with cosmic ray rejection in this
pipeline, The default option is called default and it will choose the
rejection method based on the binning of the image. Note that there are only
two real methdos: dcr and lacosmic.

For binning 1x1 the choice will be dcr for binning 2x2 and
3x3 will be lacosmic.

The method dcr is a program written in C by Wojtek
Pych (http://users.camk.edu.pl/pych/DCR/) that works very well for
spectroscopy the only negative aspect is that integration with python was
difficult and not natively (through subprocess).

The method lacosmic is well known but there are different implementations,
we started using cosmicray_lacosmic() [https://ccdproc.readthedocs.io/en/latest/api/ccdproc.cosmicray_lacosmic.html#ccdproc.cosmicray_lacosmic] but later we shifted
towards astroscrappy.detect_cosmics. The LACosmic method was developed by Pieter
G. van Dokkum. See <http://www.astro.yale.edu/dokkum/lacosmic/>

There is also the option of skipping cosmic ray removal by using none.

	Parameters

	
	ccd (object) – a CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

	image_name (str) – Science image name.

	out_prefix (str) – Partial prefix to be added to the image name. Related
to previous processes and not cosmic ray rejection.

	red_path (str) – Path to reduced data directory.

	dcr_par (str) – Path to dcr.par file.

	keep_files (bool) – If True, the original file and the cosmic ray mask
will not be deleted. Default is False.

	prefix (str) – Cosmic ray rejection related prefix to be added to image
name.

	method (str) – Method to use for cosmic ray rejection. There are four
options: default, dcr, lacosmic and none.

	save (bool) – Disables by default saving the images

	Returns

	CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance and out_prefix which is the prefix added to
the image name.

	Raises

	
	NotImplementedError if the method argument is not dcr, lacosmic

	nor none.

	
pipeline.core.core.classify_spectroscopic_data(path, search_pattern)

	Classify data by grouping them by a set of keywords.

This function uses ImageFileCollection [https://ccdproc.readthedocs.io/en/latest/api/ccdproc.ImageFileCollection.html#ccdproc.ImageFileCollection]. First it creates a
collection of information regarding the images located in path that
match the pattern search_pattern. The information obtained are all
keywords listed in the list keywords.
The ImageFileCollection [https://ccdproc.readthedocs.io/en/latest/api/ccdproc.ImageFileCollection.html#ccdproc.ImageFileCollection] object is translated into
DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] and then is used much like an SQL database to
select and filter values and in that way put them in groups that are
DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instances.
The keywords retrieved are:
- date
- slit
- date-obs
- obstype
- object
- exptime
- obsra
- obsdec
- grating
- cam_targ
- grt_targ
- filter
- filter2
- gain
- rdnoise.

Then all data is grouped by matching the following keywords:

	slit

	radeg

	decdeg

	grating

	cam_targ

	grt_targ

	filter

	filter2

	gain

	rdnoise

And finally, every group is classified as: a comparison lamp-only group,
an object-only group or a group of object and comparison lamps. The
comparison lamps present in the last group (COMP + OBJECT) are also
added in the first one (COMP-only).

	Parameters

	
	path (str) – Path to data location

	search_pattern (str) – Prefix to match files.

	Returns

	Instance of pipeline.core.core.NightDataContainer

	
pipeline.core.core.combine_data(image_list, dest_path, prefix=None, output_name=None, method='median', save=False)

	Combine a list of CCDData instances.

	Parameters

	
	image_list (list) – Each element should be an instance of CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData]

	dest_path (str) – Path to where the new image should saved

	prefix (str) – Prefix to add to the image file name

	output_name (str) – Alternatively a file name can be parsed, this will
ignore prefix.

	method (str) – Method for doing the combination, this goes straight to
the call of ccdproc.combine function.

	save (bool) – If True will save the combined images. If False it will
ignore prefix or output_name.

	Returns

	A combined image as a CCDData object.

	
pipeline.core.core.convert_time(in_time)

	Converts time to seconds since epoch

	Parameters

	in_time (str) – time obtained from header’s keyword DATE-OBS

	Returns

	time in seconds since epoch

	
pipeline.core.core.dcr_cosmicray_rejection(data_path, in_file, prefix, dcr_par_dir, keep_cosmic_files=False, save=True)

	Runs an external code for cosmic ray rejection

DCR was created by Wojtek Pych and the code can be obtained from
http://users.camk.edu.pl/pych/DCR/ and is written in C. Contrary to
ccdproc’s LACosmic it actually applies the correction, and also doesn’t
update the mask attribute since it doesn’t work with CCDData instances.

The binary takes three positional arguments, they are: 1. input image,
2. output image and 3. cosmic rays image. Also it needs that a dcr.par file
is located in the directory. All this is implemented in this function, if
delete is True it will remove the original image and the cosmic rays
image. The removal of the original image is absolutely safe when used in the
context of the goodman pipeline, however if you want to implement it
somewhere else, be careful.

Notes

This function operates an external code therefore it doesn’t return
anything natively, instead it creates a new image. A workaround has been
created that loads the new image and deletes the file.

	Parameters

	
	data_path (str) – Data location

	in_file (str) – Name of the file to have its cosmic rays removed

	prefix (str) – Prefix to add to the file with the cosmic rays removed

	dcr_par_dir (str) – Directory of default dcr.par file

	keep_cosmic_files (bool) – True for deleting the input and cosmic ray file.

	save (bool) – Toggles the option of saving the image.

	
pipeline.core.core.extract_fractional_pixel(ccd, target_trace, target_stddev, extraction_width, background_spacing=3)

	Performs an spectrum extraction using fractional pixels.

	Parameters

	
	ccd (object) – Instance of CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] that contains a 2D spectrum.

	target_trace (object) – Instance of astropy.modeling.models.Model that
defines the trace of the target on the image (ccd).

	target_stddev (float) – Standard deviation value for the spatial profile
fitted to the target.

	extraction_width (int) – Width of the extraction area as a function of
target_stddev. For instance if extraction_with is set to 1 the
function extract 0.5 to each side from the center of the traced
target.

	background_spacing (float) – Number of target_stddev to separate the
target extraction to the background. This is from the edge of the
extraction zone to the edge of the background region.

	
pipeline.core.core.extract_optimal()

	Placeholder for optimal extraction method.

	Raises

	NotImplementedError

	
pipeline.core.core.extraction(ccd, target_trace, spatial_profile, extraction_name)

	Calls appropriate spectrum extraction routine

This function calls the appropriate extraction function based on
extraction_name

Notes

Optimal extraction is not implemented.

	Parameters

	
	ccd (object) – Instance of CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] containing a 2D spectrum

	target_trace (object) – Instance of astropy.modeling.Model, a low order
polynomial that defines the trace of the spectrum in the ccd object.

	spatial_profile (object) – Instance of astropy.modeling.Model, a Gaussian
model previously fitted to the spatial profile of the 2D spectrum
contained in the ccd object.

	extraction_name (str) – Extraction type, can be fractional or
optimal though the optimal extraction is not implemented yet.

	Returns

	Instance of CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] containing a 1D spectrum. The
attribute ‘data’ is replaced by the 1D array resulted from the
extraction process.

	Return type

	ccd (object)

	Raises

	NotImplementedError – When extraction_name is optimal.

	
pipeline.core.core.fractional_sum(data, index, low_limit, high_limit)

	Performs a fractional pixels sum

A fractional pixels sum is required several times while
extracting a 1D spectrum from a 2D spectrum. The method
is actually very simple.

It requires the full data, the column and the range to sum, this
range is given as real numbers. First it separates the limits values as an
integer and fractional parts. Then it will sum the integer’s interval and
subtract the low_limit’s fractional part and sum the high_limit’s
fractional part.

The sum is performed in one operation. It does not do
background subtraction, for which this very same method is used to
get the background sum to be subtracted later.

	Parameters

	
	data (numpy.ndarray [https://numpy.readthedocs.io/en/latest/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 2D array that contains the 2D spectrum/image

	index (int) – Index of the column to be summed.

	low_limit (float) – Lower limit for the range to be summed.

	high_limit (float) – Higher limit for the range to be summed.

	Returns

	Sum in ADU of all pixels and fractions between low_limit and
high_limit.

	
pipeline.core.core.get_best_flat(flat_name, path)

	Look for matching master flat

Given a basename for master flats defined as a combination of key parameters
extracted from the header of the image that we want to flat field, this
function will find the name of the files that matches the base name and then
will choose the first. Ideally this should go further as to check signal,
time gap, etc.
After it identifies the file it will load it using CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] and
return it along the filename.
In the case it fails it will return None instead of master_flat and another
None instead of master_flat_name.

	Parameters

	
	flat_name (str) – Full path of master flat basename. Ends in ‘*.fits’ for
using glob.

	path (str) – Location to look for flats.

	Returns

	A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.
master_flat_name (str): Full path to the chosen master flat.

	Return type

	master_flat (object)

	
pipeline.core.core.get_central_wavelength(grating, grt_ang, cam_ang)

	Calculates the central wavelength for a given spectroscopic mode

The equation used to calculate the central wavelength is the following

	Parameters

	
	grating (str) – Grating frequency as a string. Example ‘400’.

	grt_ang (str) – Grating Angle as a string. Example ‘12.0’.

	cam_ang (str) – Camera Angle as a string. Example ‘20.0’

	Returns

	Central wavelength as a float value.

	Return type

	central_wavelength (float)

	
pipeline.core.core.get_slit_trim_section(master_flat)

	Find the slit edges to trim all data

Using a master flat, ideally with good signal to noise ratio, this function
will identify the edges of the slit projected into the detector. Having this
done will allow to reduce the overall processing time and also reduce the
introduction of artifacts due to non-illuminated regions in the detectors,
such as NaNs -INF +INF, etc.

	Parameters

	master_flat (object) – A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

	Returns

	
	Trim section in spatial direction in the format

	[:,slit_lower_limit:slit_higher_limit]

	Return type

	slit_trim_section (str)

	
pipeline.core.core.get_twilight_time(date_obs)

	Get end/start time of evening/morning twilight

Notes

Taken from David Sanmartim’s development

	Parameters

	date_obs (list) – List of all the dates from data.

	Returns

	
	Evening twilight time in the format

	’YYYY-MM-DDTHH:MM:SS.SS’

	twilight_morning (str): Morning twilight time in the format

	’YYYY-MM-DDTHH:MM:SS.SS’

	sun_set_time (str): Sun set time in the format

	’YYYY-MM-DDTHH:MM:SS.SS’

	sun_rise_time (str): Sun rise time in the format

	’YYYY-MM-DDTHH:MM:SS.SS’

	Return type

	twilight_evening (str)

	
pipeline.core.core.identify_targets(ccd, nfind=3, plots=False)

	Identify spectroscopic targets in an image

This function collapses the image along the dispersion direction using a
median, This highlights the spatial features present in a 2D spectrum
(image), Then does a sigma clip to remove any features in order to fit the
background level and shape, the fit is a linear function. Once the
background has been removed it will equal to zero all negative values. It
will perform a new sigma clipping but this time to determinate the
background amplitude. Finally it finds all the peaks above the background
level and pick the nfind largest ones.

	Parameters

	
	ccd (object) – a CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

	nfind (int) – Maximum number of targets to be returned.

	plots (bool) – To show debugging plots.

	Returns

	
	an astropy.modeling.Model instance, it could be

	a Gaussian1D or a list of Gaussian1D. Each of them represent a
point source spectrum found. In the past a CompoundModel was
returned but the processing of those was slightly more complicated
than a list of Gaussian1Ds.

	Return type

	profile_model (object)

	
pipeline.core.core.image_overscan(ccd, overscan_region, add_keyword=False)

	Apply overscan correction to data

Uses ccdproc.subtract_overscan to perform the task.

Notes

The overscan_region argument uses FITS convention, just like IRAF,
therefore is 1 based. i.e. it starts in 1 not 0.

	Parameters

	
	ccd (object) – A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance to be overscan corrected.

	overscan_region (str) – The overscan region in the format [x1:x2,y1:y2]
where x is the spectral axis and y is the spatial axis.

	add_keyword (bool) – Tells ccdproc whether to add a keyword or not.
Default False.

	Returns

	Overscan corrected CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance

	Return type

	ccd (object)

	
pipeline.core.core.image_trim(ccd, trim_section, trim_type='trimsec', add_keyword=False)

	Trim image to a given section

Notes

The overscan_region argument uses FITS convention, just like IRAF,
therefore is 1 based. i.e. it starts in 1 not 0.

	Parameters

	
	ccd (object) – A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

	trim_section (str) – The trimming section in the format [x1:x2,y1:y2]
where x is the spectral axis and y is the spatial axis.

	trim_type (str) – trimsec or slit trim.

	add_keyword (bool) – Tells ccdproc whether to add a keyword or not.
Default False.

	Returns

	Trimmed CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance

	Return type

	ccd (object)

	
pipeline.core.core.interpolate(spectrum, interpolation_size)

	Creates an interpolated version of the input spectrum

This method creates an interpolated version of the input array, it is
used mainly for a spectrum but it can also be used with any
unidimensional array. The reason for doing interpolation is
that it allows to find the lines and its respective center more
precisely.

	Parameters

	
	spectrum (array) – an uncalibrated spectrum or any unidimensional
array.

	interpolation_size (int) – Number of points to interpolate. (points added
between two existing ones)

	Returns

	
	Two dimensional array containing x-axis and interpolated array.

	The x-axis preserves original pixel values.

	
pipeline.core.core.normalize_master_flat(master, name, method='simple', order=15)

	Master flat normalization method

	This function normalize a master flat in three possible ways:

	mean: simply divide the data by its mean

simple: Calculates the median along the spatial axis in order to obtain
the dispersion profile. Then fits a Chebyshev1D [http://docs.astropy.org/en/latest/api/astropy.modeling.polynomial.Chebyshev1D.html#astropy.modeling.polynomial.Chebyshev1D] model and apply this to all
the data.

full: This is for experimental purposes only because it takes a lot of
time to process. It will fit a model to each line along the dispersion axis
and then divide it by the fitted model. I do not recommend this method
unless you have a good reason as well as a very powerful computer.

	Parameters

	
	master (object) – Master flat. Has to be a CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

	name (str) – Full path of master flat prior to normalization.

	method (str) – Normalization method, ‘mean’, ‘simple’ or ‘full’.

	order (int) – Order of the polynomial to be fitted.

	Returns

	The normalized master flat. CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

	Return type

	master (object)

	
pipeline.core.core.ra_dec_to_deg(right_ascension, declination)

	Converts right ascension and declination to degrees

	Parameters

	
	right_ascension (str) – Right ascension in the format hh:mm:ss.sss

	declination (str) – Declination in the format dd:mm:ss.sss

	Returns

	Right ascension in degrees
declination_deg (float): Declination in degrees

	Return type

	right_ascension_deg (float)

	
pipeline.core.core.read_fits(full_path, technique='Unknown')

	Read fits files while adding important information to the header

It is necessary to record certain data to the image header so that’s the
reason for this wrapper of read() to exist. It will add
the following keywords. In most cases, if the keyword already exist it will
skip it except for GSP_FNAM, GSP_PATH and BUNIT.
GSP_VERS: Goodman Spectroscopic Pipeline version number
GSP_ONAM: Original File name
GSP_PNAM: Parent file name or name of the file from which this one
originated after some process or just a copy.
GSP_FNAM: Current file name.
GSP_PATH: Path to file at the moment of reading.
GSP_TECH: Observing technique. Spectroscopy or Imaging.
GSP_DATE: Date of first reading.
GSP_OVER: Overscan region.
GSP_TRIM: Trim section (region).
GSP_SLIT: Slit trim section, obtained from the slit illuminated area.
GSP_BIAS: Master bias image used. Default none.
GSP_FLAT: Master flat image used. Default none.
GSP_NORM: Flat normalization method.
GSP_COSM: Cosmic ray rejection method.
GSP_WRMS: Wavelength solution RMS Error.
GSP_WPOI: Number of points used to calculate the wavelength solution
Error.
GSP_WREJ: Number of points rejected.

	Parameters

	
	full_path (str) – Full path to file.

	technique (str) – Observing technique. ‘Imaging’ or ‘Spectroscopy’.

	Returns

	
	Instance of CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] corresponding to the file from

	full_path.

	
pipeline.core.core.save_extracted(ccd, destination, prefix='e', target_number=1)

	Save extracted spectrum while adding a prefix.

	Parameters

	
	ccd (object) – CCDData instance

	destination (str) – Path where the file will be saved.

	prefix (str) – Prefix to be added to images. Default e.

	target_number (int) –

	Returns

	CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance of the image just recorded. although is not
really necessary.

	
pipeline.core.core.search_comp_group(object_group, comp_groups, reference_data)

	Search for a suitable comparison lamp group

In case a science target was observed without comparison lamps, usually
right before or right after, this function will look for a compatible set
obtained at a different time or pointing.

Notes

This methodology is not recommended for radial velocity studies.

	Parameters

	
	object_group (object) – A DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instances containing a group
of images for a given scientific target.

	comp_groups (list) – A list in which every element is a DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]
that contains information regarding groups of comparison lamps.

	reference_data (object) – Instance of
goodman.pipeline.core.ReferenceData contains all information
related to the reference lamp library.

Returns:

	
pipeline.core.core.setup_logging()

	configures logging

Notes

Logging file name is set to default ‘goodman_log.txt’.
If –debug is activated then the format of the message is different.

	
pipeline.core.core.trace(ccd, model, trace_model, model_fitter, sampling_step, nsigmas=2)

	Find the trace of a spectrum

This function is called by the trace_targets function, the difference is
that it only takes single models only not CompoundModels so this function
is called for every single target. CompoundModels are a bit tricky when
you need each model separated so all CompoundModels have been removed.

Notes

This method forces the trace to go withing a rectangular region of
center model.mean.value and width 2 * nsigmas, this is for allowing
the tracing of low SNR targets. The assumption is valid since the
spectra are always well aligned to the detectors’s pixel columns.
(dispersion axis)

	Parameters

	
	ccd (object) – A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance, 2D image.

	model (object) – An astropy.modeling.Model instance that contains
information regarding the target to be traced.

	trace_model (object) – An astropy.modeling.Model instance, usually a low
order polynomial.

	model_fitter (object) – An astropy.modeling.fitting.Fitter instance. Will
fit the sampled points to construct the trace model

	sampling_step (int) – Step for sampling the spectrum.

	nsigmas (int) – Number of stddev to each side of the mean to be used for
searching the trace.

	Returns

	An astropy.modeling.Model instance, that defines the trace of the
spectrum.

	
pipeline.core.core.trace_targets(ccd, target_list, sampling_step=5, pol_deg=2, nsigmas=10, plots=False)

	Find the trace of the target’s spectrum on the image

This function defines a low order polynomial that trace the location of the
spectrum. The attributes pol_deg and sampling_step define the polynomial
degree and the spacing in pixels for the samples. For every sample a
gaussian model is fitted and the center (mean) is recorded and since
spectrum traces vary smoothly this value is used as a new center for the
base model used to fit the spectrum profile.

Notes

This doesn’t work for extended sources. Also this calls for the function
trace for doing the actual trace, the difference is that this method
is at a higher level.

	Parameters

	
	ccd (object) – Instance of CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData]

	target_list (list) – List of single target profiles.

	sampling_step (int) – Frequency of sampling in pixels

	pol_deg (int) – Polynomial degree for fitting the trace

	plots (bool) – If True will show plots (debugging)

	nsigmas (int) – Number of sigmas to search for a target. default 10.

	Returns

	
	List that contains traces that are

	astropy.modeling.Model instance

	Return type

	all_traces (list)

	
pipeline.core.core.write_fits(ccd, full_path, combined=False, parent_file=None, overwrite=True)

	Write fits while adding information to the header.

This is a wrapper for allowing to save files while being able to add
information into the header. Mostly for historical reasons.

	Parameters

	
	ccd (object) – A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance to be saved to fits.

	full_path (str) – Full path of file.

	combined (bool) – True if ccd is the result of combining images.

	parent_file (str) – Name of the file from which ccd originated. If
combined is True this will be set to combined.

	overwrite (bool) – Overwrite files, default True.

	Returns

	CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance.

Module contents

pipeline.images.tests package

Submodules

pipeline.images.tests.test_data_classifier module

pipeline.images.tests.test_goodman_ccd module

pipeline.images.tests.test_image_processor module

pipeline.images.tests.test_night_organizer module

Module contents

pipeline.images package

Subpackages

	pipeline.images.tests package
	Submodules

	pipeline.images.tests.test_data_classifier module

	pipeline.images.tests.test_goodman_ccd module

	pipeline.images.tests.test_image_processor module

	pipeline.images.tests.test_night_organizer module

	Module contents

Submodules

pipeline.images.data_classifier module

	
class pipeline.images.data_classifier.DataClassifier

	Bases: object

Classifies the data being presented to the pipeline.

Data classifier is intended to define the camera that is being used and the
technique in use. This will be used later to make important decisions
regarding the process to be used.

pipeline.images.goodman_ccd module

	
class pipeline.images.goodman_ccd.MainApp

	Bases: object

	
pipeline.images.goodman_ccd.get_args(arguments=None)

	Get command line arguments.

The list of arguments can be obtained by using the argument --help.
All the arguments start with two dashes and single-character arguments where
avoided in order to eliminate confusion.

	Parameters

	arguments (list) – A list containing the arguments as elements.

	Returns

	
	argparse instance. Contains all the arguments as

	attributes

	Return type

	args (object)

pipeline.images.image_processor module

	
class pipeline.images.image_processor.ImageProcessor(args, data_container)

	Bases: object

Image processing class

This class contains methods for performing CCD image reduction for
spectroscopy and imaging.

	
create_master_bias(bias_group)

	Create Master Bias

Given a DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] object that contains a list of compatible bias.
This function creates the master flat using ccdproc.combine using median
and 3-sigma clipping.

	Parameters

	bias_group (object) – DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance that contains a list
of bias images compatible with each other.

	
create_master_flats(flat_group, target_name='')

	Creates master flats

Using a list of compatible flat images it combines them using median and
1-sigma clipping. Also it apply all previous standard calibrations to
each image.

	Parameters

	
	flat_group (object) – DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance. Contains a list of
compatible flat images

	target_name (str) – Science target name. This is used in some science
case uses only.

	Returns

	The master flat CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance and the name of under which
the master flat was stored.

	
define_trim_section(technique=None)

	Get the initial trim section

The initial trim section is usually defined in the header with the
keyword TRIMSEC but in the case of Goodman HTS this does not work well.
In particular for spectroscopy where is more likely to have combined
binning and so on.

	Parameters

	technique (str) – The name of the technique, the options are:
Imaging or Spectroscopy.

	Returns

	x2, y1:y2]``

	Return type

	The trim section in the format ``[x1

	
get_overscan_region()

	Get the right overscan region for spectroscopy

	It works for the following ROI:

	Spectroscopic 1x1
Spectroscopic 2x2
Spectroscopic 3x3

The limits where measured on a Spectroscopic 1x1 image and then divided
by the binning size. This was checked
that it actually works as expected.

Notes

The regions are 1-based i.e. different to Python convention.
For Imaging there is no overscan region.

	Returns

	
	overscan_region (str) Region for overscan in the format

	
	’[min:max,:]’ where min is the starting point and max is the end

	point of the overscan region.

	
name_master_flats(header, group, target_name='', get=False)

	Defines the name of a master flat or what master flat is compatible
with a given data

Given the header of a flat image this method will look for certain
keywords that are unique to a given instrument configuration therefore
they are used to discriminate compatibility.

It can be used to define a master flat when creating it or find a base
name to match existing master flat files thus finding a compatible one
for a given non-flat image.

	Parameters

	
	header (object) – Fits header. Instance of
astropy.io.fits.header.Header

	group (object) – DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance. Contains filenames as
well as other important keywords that are defined in
ccd.night_organizer.NightOrganizer.keywords

	target_name (str) – Optional science target name to be added to the
master flat name.

	get (bool) – This option is used when trying to find a suitable
master flat for a given data.

	Returns

	A master flat name, or basename to find a match among existing
files.

	
process_imaging_science(imaging_group)

	Does image reduction for science imaging data.

	Parameters

	imaging_group (object) – DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance that contains a
list of science data that are compatible with a given
instrument configuration and can be reduced together.

	
process_spectroscopy_science(science_group, save_all=False)

	Process Spectroscopy science images.

This function handles the full image reduction process for science
files. if save_all is set to True, all intermediate steps are saved.

	Parameters

	
	science_group (object) – DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] instance that contains a
list of science images that where observed at the same pointing
and time. It also contains a set of selected keywords from the
image’s header.

	save_all (bool) – If True the pipeline will save all the intermadiate
files such as after overscan correction or bias corrected and
etc.

pipeline.images.night_organizer module

	
class pipeline.images.night_organizer.NightOrganizer(full_path, instrument, technique, ignore_bias=False, ignore_flats=False)

	Bases: object

	
check_header_cards()

	Check if the header contains all the keywords (cards) expected.

This is critical for old goodman data.

	Raises

	ValueError – If any of the cards does not exists in the image’s
header

	
imaging_night()

	Organizes data for imaging

For imaging there is no discrimination regarding night data since the
process is simpler. It is a three stage process classifying BIAS,
FLAT and OBJECT data type. The data is packed in groups that
are pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] objects.

	
spectroscopy_night(file_collection, data_container)

	Organizes data for spectroscopy

This method identifies all combinations of nine key keywords that
can set apart different objects with their respective calibration data
or not. The keywords used are:

	GAIN

	RDNOISE

	GRATING

	FILTER2

	CAM_TARG

	GRT_TARG

	SLIT

	OBSRA

	OBSDEC

This method populates the data_container class attribute which is an
instance of the pipeline.core.core.NightDataContainer.
A data group is an instance of a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame].

Module contents

Goodman CCD Reduction Tool

pipeline.spectroscopy.tests package

Submodules

pipeline.spectroscopy.tests.test_redspec module

pipeline.spectroscopy.tests.test_wavelength module

Module contents

pipeline.spectroscopy package

Subpackages

	pipeline.spectroscopy.tests package
	Submodules

	pipeline.spectroscopy.tests.test_redspec module

	pipeline.spectroscopy.tests.test_wavelength module

	Module contents

Submodules

pipeline.spectroscopy.new_wavelength module

	
exception pipeline.spectroscopy.new_wavelength.DataValidationError(message)

	Bases: Exception

	
class pipeline.spectroscopy.new_wavelength.WavelengthCalibration(data_path=None)

	Bases: object

pipeline.spectroscopy.redspec module

Pipeline for Goodman High Troughput Spectrograph spectra Extraction.

This program finds reduced images, i.e. trimmed, bias subtracted, flat fielded,
etc. that match the <pattern> in the source folder, then classify them in
two groups: Science or Lamps. For science images, finds the spectrum or spectra
and traces it doing some fit.

Simon Torres 2016-06-28

	
class pipeline.spectroscopy.redspec.MainApp

	Bases: object

Defines and initialize all important variables for processing the data

The MainApp class controls the way the night is organized for further
processing. It also sets the appropriate parameters that will allow for a
smooth working in all the other modules.

	
pipeline.spectroscopy.redspec.get_args(arguments=None)

	Handles the argparse library and returns the arguments

The list of arguments can be found with running redspec -h or
redspec --help.

Notes

The full list of arguments are not listed here as the may evolve in
which case is impossible to keep this up to date.

	Returns

	An object that contains all the variables parsed through the argument
system

pipeline.spectroscopy.wavelength module

Contains the tools to produce a wavelength solution

This module gets the extracted data to produce a wavelength solution, linearize
the spectrum and write the solution to the image’s header following the FITS
standard.

	
class pipeline.spectroscopy.wavelength.WavelengthCalibration(args)

	Bases: object

Wavelength Calibration Class

The WavelengthCalibration class is instantiated for each of the science
images, which are treated as a “science object”. In this first release it
can find a wavelength solution for a given comparison lamp using an
interactive GUI based on Matplotlib. Although it works very good, for the
next release there is a plan for creating an independent GUI based on QT in
order to work better in different screen sizes and other topic such as
showing warnings, messages and help.

This class takes 1D spectrum with no wavelength calibration and returns fits
files with wavelength solutions using the FITS standard for linear
solutions. Goodman spectra are slightly non-linear therefore they are
linearized and smoothed before they are returned for the user.

	
add_wavelength_solution(ccd, x_axis, evaluation_comment=None)

	Add wavelength solution to the new FITS header

Defines FITS header keyword values that will represent the wavelength
solution in the header so that the image can be read in any other
astronomical tool. (e.g. IRAF)

Notes

This method also saves the data to a new FITS file, This should be
in separated methods to have more control on either process.

	Parameters

	
	ccd (object) – Instance of CCDData

	x_axis –

	evaluation_comment (str) – A comment with information regarding the
quality of the wavelength solution

	Returns

	
	A CCDData [http://docs.astropy.org/en/latest/api/astropy.nddata.CCDData.html#astropy.nddata.CCDData] instance with linear wavelength

	solution on it.

	Return type

	ccd (object)

	
get_wsolution()

	Returns the mathematical model of the wavelength solution

The wavelength solution is a callable mathematical function from
astropy.modeling.models. By obtaining this mathematical model the user
can use its own method to apply it to a given data.

	Returns

	A callable mathematical function. None if the wavelength solution
doesn’t exist.

	
class pipeline.spectroscopy.wavelength.WavelengthSolution(solution_type=None, model_name=None, model_order=0, model=None, ref_lamp=None, eval_comment='', header=None)

	Bases: object

Contains all relevant information of a given wavelength solution

Stores the mathematical model that allows to convert from pixel to angstrom
as well as more detailed information regarding the type of solution and the
quality.

	
check_compatibility(header=None)

	Checks compatibility of new data

A wavelength solution is stored as an object (this class). As an
attribute of this class there is a dictionary that contains critical
parameters of the spectrum that were used to obtain this solution.
In order to apply the same solution to another spectrum its header has
to be parsed and then the parameters are compared in order of
importance.

	Parameters

	header (object) – FITS header instance from
astropy.io.fits.header.Header.

	Returns

	True if the new data is compatible with the solution or False if its
not.

	
set_solution_name(header)

	Defines a name for the solution

Using the header’s information define a string that could be used as a
keyword to identify a particular solution in the event that multiple
solutions or instances of this class are stored somewhere/somehow.

	Parameters

	header (object) – FITS header instance from
astropy.io.fits.header.Header.

	Returns

	Wavelength solution name.

	
set_spectral_features(header)

	Creates dictionary that defines the instrument configuration

Both Blue and Red Camera produce slightly different FITS headers being
the red camera the one that provides more precise and better
information. This method will recognize the camera and create the
dictionary accordingly.

Notes

As of August 2017 both headers are FITS compliant and contain the
same keywords.

	Parameters

	header (object) – Instance of astropy.io.fits.header.Header.

	Returns

	A dictionary that contains key information regarding the kind of
spectroscopic data, basically related to the instrument
configuration.
The keywords it reads are: INSTCONF, GRATING, ROI, FILTER, FILTER2,
SLIT, WAVMODE, CAM_ANG, GRT_ANG.

Module contents

Goodman Spectroscopic Tools

pipeline.tools.reference_lamp_factory.tests package

Submodules

pipeline.tools.reference_lamp_factory.tests.test_create_reference_lamps module

Module contents

pipeline.tools.reference_lamp_factory package

Subpackages

	pipeline.tools.reference_lamp_factory.tests package
	Submodules

	pipeline.tools.reference_lamp_factory.tests.test_create_reference_lamps module

	Module contents

Submodules

pipeline.tools.reference_lamp_factory.create_reference_lamps module

	
class pipeline.tools.reference_lamp_factory.create_reference_lamps.ReferenceLibraryFactory(arguments=None)

	Bases: object

	
class pipeline.tools.reference_lamp_factory.create_reference_lamps.Settings(json_settings)

	Bases: object

	
class pipeline.tools.reference_lamp_factory.create_reference_lamps.SettingsField(field)

	Bases: object

pipeline.tools.reference_lamp_factory.line_matcher module

	
class pipeline.tools.reference_lamp_factory.line_matcher.LineMatcher

	Bases: object

	
identify_matching_line()

	Interactive recording lines

This function runs in an independent thread and is triggered by a click
event on the plot.

There is a very rudimentary locking system defined by a boolean
self.lock_identify. This lock is activated at the beginning and
deactivated at the end of the execution of this function.

	Returns

	

	
pipeline.tools.reference_lamp_factory.line_matcher.get_spectral_characteristics(ccd)

	Calculates some Goodman’s specific spectroscopic values.

From the header value for Grating, Grating Angle and Camera Angle it is
possible to estimate what are the wavelength values at the edges as well
as in the center. It was necessary to add offsets though, since the
formulas provided are slightly off. The values are only an estimate.

	Returns

	
	Contains the following parameters:

	center: Center Wavelength
blue: Blue limit in Angstrom
red: Red limit in Angstrom
alpha: Angle
beta: Angle
pix1: Pixel One
pix2: Pixel Two

	Return type

	spectral_characteristics (dict)

pipeline.tools.reference_lamp_factory.wcs_model_calculator module

	
class pipeline.tools.reference_lamp_factory.wcs_model_calculator.GSPWcsCalculator(save_pdf_to=None)

	Bases: object

Module contents

pipeline.tools.tests package

Submodules

pipeline.tools.tests.test_check_version module

Module contents

pipeline.tools package

Subpackages

	pipeline.tools.reference_lamp_factory package
	Subpackages
	pipeline.tools.reference_lamp_factory.tests package
	Submodules

	pipeline.tools.reference_lamp_factory.tests.test_create_reference_lamps module

	Module contents

	Submodules

	pipeline.tools.reference_lamp_factory.create_reference_lamps module

	pipeline.tools.reference_lamp_factory.line_matcher module

	pipeline.tools.reference_lamp_factory.wcs_model_calculator module

	Module contents

	pipeline.tools.tests package
	Submodules

	pipeline.tools.tests.test_check_version module

	Module contents

Submodules

pipeline.tools.check_version module

	v1.0.0

	
	First public release.

	
pipeline.tools.check_version.am_i_updated(version)

	

	
pipeline.tools.check_version.get_last(url='https://api.github.com/repos/soar-telescope/goodman/releases/latest')

	Returns the version of the last release on GitHub.

	Parameters

	(str, optinal) (url) –

	Returns

	version (LooseVersion)

	Return type

	the last version of the pipeline.

pipeline.tools.update_FNAM module

	
class pipeline.tools.update_FNAM.KeywordUpdate(search_pattern='*fits')

	Bases: object

Module contents

pipeline.wcs.tests package

Submodules

pipeline.wcs.tests.test_functional module

pipeline.wcs.tests.test_unittest module

Module contents

pipeline.wcs package

Subpackages

	pipeline.wcs.tests package
	Submodules

	pipeline.wcs.tests.test_functional module

	pipeline.wcs.tests.test_unittest module

	Module contents

Submodules

pipeline.wcs.wcs module

Set of class and method to handle wavelength solutions

	
class pipeline.wcs.wcs.WCS

	Bases: object

World Coordinate System class for Spectroscopy

This class is intended to contain methods for all operations regarding
WCS for spectroscopy or wavelength solution operations. Starting on the
fitting to writing (and reading) from a FITS header.

	
binning

	

	
fit(physical, wavelength, model_name='chebyshev', degree=3)

	Fits a mathematical model

	Parameters

	
	physical (list) – List of line centers in pixel

	wavelength (list) – List of line centers in Angstroms

	model_name (str) – Name of the Mathematical model that needs to be
created

	degree (int) – Degree or order of the mathematical model (usually is
some kind of polynomial).

	
get_model()

	Returns the wavelength solution model if exists.

	
read(ccd=None)

	Read WCS from FITS header

Notes

The mathematical model stays as an attribute of the class as model

	Parameters

	ccd (object) – Instance of :class:`~astropy.nddata.CCDData` with FITS’s wavelength
solution.

	Returns

	A list with an array representing the wavelength axis and another
representing the intensity (ccd.data).

	
read_gsp_wcs(ccd)

	Read a GSP-specific wavelength solution

	Parameters

	ccd (object) – CCDData instance

	Returns

	astropy.modeling.Model instance

	
write_fits_wcs(ccd, model)

	Write FITS WCS to the header

Notes

This method is not implemented, in the current version the
equivalent method resides within
goodman.pipeline.spectroscopy.wavelength.py

	Parameters

	
	ccd (object) – Instance of :class:`~astropy.nddata.CCDData`

	model (object) – Instance of astropy.modeling.Model that should be
the mathematical representation of the wavelength solution of
ccd

	Raises

	NotImplementedError

	
static write_gsp_wcs(ccd, model)

	Writes a GSP-specific wavelength solution

In an effort to easily write non-linear wavelength solutions into a fits
header this method add a set of keywords that describes a pixel to
angstrom relationship by means of using the astropy’s modeling tools.

GSP stands for Goodman Spectroscopic Pipeline.

Notes

A limited amount of mathematical models are implemented on the read
side. So you have to be careful what you write.

	Parameters

	
	ccd (object) – CCDData instance. Its header attribute will be
modified

	model (object) – astropy.modeling.Model instance.

Returns:

Module contents

pipeline package

Subpackages

	pipeline.core package
	Subpackages
	pipeline.core.tests package
	Submodules

	pipeline.core.tests.test_ccdproc module

	pipeline.core.tests.test_core module

	Module contents

	Submodules

	pipeline.core.core module

	Module contents

	pipeline.images package
	Subpackages
	pipeline.images.tests package
	Submodules

	pipeline.images.tests.test_data_classifier module

	pipeline.images.tests.test_goodman_ccd module

	pipeline.images.tests.test_image_processor module

	pipeline.images.tests.test_night_organizer module

	Module contents

	Submodules

	pipeline.images.data_classifier module

	pipeline.images.goodman_ccd module

	pipeline.images.image_processor module

	pipeline.images.night_organizer module

	Module contents

	pipeline.spectroscopy package
	Subpackages
	pipeline.spectroscopy.tests package
	Submodules

	pipeline.spectroscopy.tests.test_redspec module

	pipeline.spectroscopy.tests.test_wavelength module

	Module contents

	Submodules

	pipeline.spectroscopy.new_wavelength module

	pipeline.spectroscopy.redspec module

	pipeline.spectroscopy.wavelength module

	Module contents

	pipeline.tools package
	Subpackages
	pipeline.tools.reference_lamp_factory package
	Subpackages
	pipeline.tools.reference_lamp_factory.tests package
	Submodules

	pipeline.tools.reference_lamp_factory.tests.test_create_reference_lamps module

	Module contents

	Submodules

	pipeline.tools.reference_lamp_factory.create_reference_lamps module

	pipeline.tools.reference_lamp_factory.line_matcher module

	pipeline.tools.reference_lamp_factory.wcs_model_calculator module

	Module contents

	pipeline.tools.tests package
	Submodules

	pipeline.tools.tests.test_check_version module

	Module contents

	Submodules

	pipeline.tools.check_version module

	pipeline.tools.update_FNAM module

	Module contents

	pipeline.wcs package
	Subpackages
	pipeline.wcs.tests package
	Submodules

	pipeline.wcs.tests.test_functional module

	pipeline.wcs.tests.test_unittest module

	Module contents

	Submodules

	pipeline.wcs.wcs module

	Module contents

Submodules

pipeline.version module

Module contents

setup module

 nav.xhtml

 Table of Contents

 		
 Welcome to Goodman HTS Pipeline’s Documentation

 		
 Overview

 		
 Usage

 		
 Prepare Data for Reduction

 		
 Processing your 2D images

 		
 Extracting the spectra

 		
 Description of custom keywords

 		
 General Purpose Keywords

 		
 Non-linear wavelength solution

 		
 Combined Images

 		
 Detected lines

 		
 Cosmic Ray Removal

 		
 Flat Normalization

 		
 Extraction Methods

 		
 File Prefixes

 		
 Remote Access

 		
 Establish a VNC connection

 		
 VNC from the Terminal

 		
 Install

 		
 Requirements

 		
 Using Conda

 		
 Working with Virtual Environments

 		
 Using PIP

 		
 Setup for local installation

 		
 Installing DCR

 		
 Compiling DCR

 		
 Installing the DCR binary

 		
 License

 		
 Authors and Credits

 		
 Acknowledgements

 		
 Questions & Answers

 		
 Change History

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

